1. Разложение силы по трем осям координат

Приведение силы к точке

Пусть дана сила F, приложенная к точке А твердого тела, и ее требуется перенести в точку О (рис. 13а).

 

Приложим к телу в точке О (рис. 13, б) уравновешенную систему сил F’ и F”, параллельных F и равных ей по модулю. Теперь кроме силы F”, приложенной в точке О, образовалась пара сил (F, F’) с моментом М = F * h, т.е. М = М0(F). Таким образом, всякую силу F, приложенную к телу в точке А, присоединив пару сил, момент которой равен моменту данной силы относительно новой точки ее приложения, можно перенести параллельно линии действия в любую точку О.

Операция такого переноса силы называется приведением силы к точке, а появляющаяся при этом пара (F, F’) с моментом М = М0(F) называется присоединенной парой (рис. 13, в). Операция приведения силы к точке имеет глубокий физический смысл.

Приведение системы сил к точке.

Пусть дана система сил F1, F2, F3, F4, расположенных как угодно на плоскости (рис. 14). Требуется сложить эти силы.

Рис. 14

 

Возьмем произвольную точку О и приведем все данные силы к этой точке, воспользовавшись способом приведения силы к точке. В результате приведения получим силы, эквивалентные заданным (на чертеже они отмечены двумя черточками) и присоединенные пары (F1, F1’), (F2, F2’), (F3, F3’), (F4, F4’), моменты которых равны моментам данных сил относительно точки О, т.е. М1 = М0(F1), М2 = М0(F2), М3 = М0(F3), М4 = М0(F4).

Складывая силы F1’, F2’, F3’, F4’, получим результирующую силу Rгл:

Rгл = F1’ + F2’ + F3’ + F4

Складывая пары (F1, F1’), (F2, F2’), (F3, F3’), (F4, F4’), получим результирующую пару, момент которой Мгл равен:

Мгл = М1 + М2 +  М3 +  М4, т.е. Мгл = SМ0(Fi) – момент результирующей пары равен алгебраической сумме моментов данных сил относительно точки О.

Rгл – главный вектор

Мгл – главный момент, следовательно: система сил, расположенных как угодно на плоскости, всегда может быть приведена к силе, равной их главному вектору и к паре, момент которой равен главному моменту данных сил относительно точки приведения.