Тема 1.1. Статика. Основные понятия и аксиомы. Плоская система сходящихся сил.
3. Равнодействующая и уравновешивающая силы. Аксиомы статики.
Аксиомы статики – это основные законы и правила, которые применяют при преобразовании систем сил в эквивалентные системы. Такие преобразования не меняют уравнений движения абсолютно твердых тел. Поэтому они позволяют перейти от исходной системы сил к более простой, под действием которой механическая система будет совершать такое же движение, как и при действии на нее исходной системы. Аксиомы статики применяются не только при рассмотрении неподвижных состояний тел, но и во многих других задачах теоретической механики, связанными с силовыми воздействиями. Условием их применения является условие отсутствия деформаций в телах, или малость деформаций по сравнению с размерами механической системы. При таком приближении все тела рассматриваются как абсолютно твердые. В тех задачах, в которых тела нельзя считать абсолютно твердыми, например, при рассмотрении деформаций, аксиомы статики применять нельзя.
С точки зрения логики изложения материала, было бы естественным сначала изучить основы динамики материальных тел, а уже затем изучать статику в качестве одного из ее подразделов – как частный случай движения с нулевой скоростью. Однако, в силу особой важности и большого числа задач, в которых применяются законы статики, ее часто изучают в самом начале как особую дисциплину. При этом основные правила статики излагают в виде аксиом – то есть положений, принятых без доказательств. Часть аксиом действительно являются фундаментальными законами механики, установленными в результате обобщения экспериментальных данных (аксиомы 1 и 5). Остальные являются следствиями уравнений движения твердых тел.
1. Аксиома инерции (закон инерции Галилея)
Существуют такие системы отсчета, в которых любая материальная точка, не взаимодействующая с другими телами и точками, движется прямолинейно и равномерно. В частности, если тело покоилось в определенный момент времени, то оно будет покоиться и в последующие моменты.
Такие системы отсчета называются инерциальными. В механике, если это особо не оговорено, под системой отсчета подразумевается именно инерциальная система отсчета.
2. Аксиома равновесия двух сил
Две силы, приложенные к абсолютно твердому телу, являются уравновешенными тогда и только тогда, когда они равны по модулю, направлены в противоположные стороны и их линии действия совпадают.
3. Аксиома присоединения и исключения уравновешивающихся сил
Кинематическое состояние твердого тела не изменится, если к действующей на него системе сил прибавить или отнять уравновешенную систему сил.
То есть, прибавляя или исключая уравновешенную систему сил, мы получаем эквивалентную систему сил.
Следствие аксиом 2 и 3
Действие силы на твердое тело не изменится, если точку приложения силы перенести вдоль ее линии действия. То есть сила, приложенная к твердому телу, является скользящим вектором. Доказательство ⇓
4. Аксиома параллелограмма сил
Две силы, приложенные к телу в одной точке, можно заменить их равнодействующей силой, равной векторной сумме этих сил и приложенной к той же точке.
Верно и обратное. Любую силу можно разложить на две (и более) силы по правилу векторной суммы (по правилу параллелограмма), приложенных в той же точке, что и исходная сила.
5. Аксиома равенства действия и противодействия (3-й закон Ньютона)
Если две взаимодействующие точки принадлежат одному твердому телу, то их силы взаимодействия друг с другом образуют уравновешенную систему сил и, согласно аксиоме 3, могут быть исключены из рассмотрения. Однако, если эти точки принадлежат разным телам, то они не образуют уравновешенной системы. Поэтому исключать такое взаимодействие нельзя.
Аксиома равенства действия и противодействия относится только к материальным точкам. Но в несколько ином виде, она применима и к твердым телам. Взаимодействие тел можно представить как взаимодействие между материальными точками, из которых состоят тела. Тогда все силы, которые действуют на точки тела 2 со стороны точек тела 1, можно привести к равнодействующей , приложенной к некоторому центру O, и паре с моментом . Тогда и все силы, которые действуют на точки тела 1 со стороны точек тела 2,
6. Принцип отвердевания
Если деформируемое тело находится в равновесии, то его равновесие не нарушится, если тело считать абсолютно твердым.
Принцип отвердевания указывает, что если конструкция, состоящая из подвижных частей, находится в равновесии (то есть скорости всех ее точек относительно некоторой инерциальной системы отсчета равны нулю), то уравнения равновесия можно применять ко всей конструкции в целом, считая ее единым твердым телом. Этот принцип является следствием предыдущих аксиом.