МАТРИЦЫ И ОПЕРАЦИИ

над ними

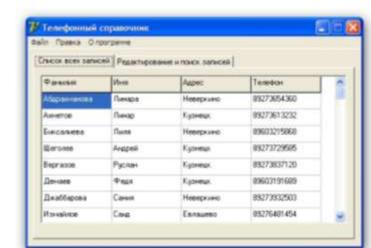
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

ПЛАН ЛЕКЦИИ

- 1. ПОНЯТИЕ И ВИДЫ МАТРИЦ
- 2. ОПЕРАЦИИ НАД МАТРИЦАМИ
- 3.РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ
 - Матричный метод
 - Метод Гаусса
 - Метод Крамера

Матрицы – везде!

- Матрицы в математике один из важнейших объектов, имеющих прикладное значение. Телефонные книги любого размера и с любым числом данных об абоненте ни что иное, как матрицы.
- * Такими матрицами мы все пользуемся почти каждый день.
- * Эти матрицы бывают с различным числом строк (тысячи, сотни тысяч и даже миллионы строк и только что начатая Вами новая записная книжка, в которой меньше десяти строк) и столбцов (справочник должностных лиц какой-нибудь организации, в котором могут быть такие столбцы, как должность и номер кабинета и та же Ваша записная книжка, где может быть только два столбца имя и телефон).
- * Всякие матрицы можно складывать и умножать, а также проводить над ними другие операции, однако нет необходимости складывать и умножать справочники, от этого нет никакой пользы...
- * Но очень многие матрицы можно и нужно складывать и перемножать и решать таким образом различные насущные задачи.



Матрица

Прямоугольной матрицей размера m*n называется совокупность m*n чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов.

Числа, заполняющие матрицу, называются элементами матрицы.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Описание матриц

Сокращенно матрицу можно задать в виде $A = (a_{ij})$ (i = 1...m; j = 1...n), числа a_{ij} , называются ее элементами; первый индекс указывает на номер строки, второй на номер столбца.

 $A = (a_{ij})$ и $B = (b_{ij})$ одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если $a_{ij} = b_{ij}$.

ПРИНЦИП НУМЕРАЦИИ СТРОК И СТОЛБЦОВ

СТРОКИ НУМЕРУЮТСЯ СВЕРХУ ВНИЗ, НАЧИНАЯ С № 1.

СТОЛБЦЫ НУМЕРУЮТСЯ СЛЕВА НАПРАВО, НАЧИНАЯ С № 1.

ЭЛЕМЕНТ МАТРИЦЫ

```
\begin{pmatrix} 12 & 4 \\ -17 & 29 \\ -30 & -36 \end{pmatrix} Элемент a_{31}(a-три-один) = -30 (3-я строка,1-й столбец)
```

СТРОКА И СТОЛБЕЦ

РАЗМЕР МАТРИЦЫ

матрица, имеющая m строк и n стольцов, называется матрицей размера m на n.

 (12
 4

 -17
 29

 -30
 -36

 Матрица размера 3 на 2

 (3 строки, 2 столбца)

ОБЩИЙ ВИД МАТРИЦЫ РАЗМЕРА т на п

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

ДИАГОНАЛИ КВАДРАТНЫХ МАТРИЦ

```
      3
      -1
      2

      4
      2
      0

      Главная диагональ

      -5
      6
      1
```

```
      3
      -1
      2

      4
      2
      0

      Побочная диагональ

      -5
      6
      1
```

Виды матриц

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом.

Матрица, состоящая из одного числа, отождествляется с этим числом.

Матрица A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через о.

виды матриц

Квадратная матрица и ее порядок

- * Если же m = n, то матрица называется **квадратной**, а число n её порядком.
- * В матрице второго порядка 2*2 (2 столбца и 2 строки -4 эл)
- * Квадратная матрица называется **неособенной** (или невырожденной, несингулярной), если её определитель не равен нулю, и **особенной** (или вырожденной, сингулярной), если её определитель равен нулю.

$$|B| = \begin{vmatrix} 1 & -2 \\ 3 & -6 \end{vmatrix} = -6 + 6 = 0.$$
 $A = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 3 \end{pmatrix}$ А – квадратная матрица

В - особенная матрица

Единичная матрица

Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Если все элементы а_{i i} диагонали равны 1, то она называется единичной и обозначается буквой E:

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

ТРЕУГОЛЬНЫЕ МАТРИЦЫ

(3 -1 2) Верхняя треугольная матрица
 0 2 0 (под главной диагональю стоят нули)
 0 0 1

 (3 0 0)
 Нижняя треугольная матрица

 -1 2 0
 (над главной диагональю стоят нули)

 2 0 1

ОПЕРАЦИИ НАД МАТРИЦАМИ

ЛЮБУЮ МАТРИЦУ МОЖНО УМНОЖИТЬ ИЛИ РАЗДЕЛИТЬ НА ЧИСЛО

$$5 \cdot \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 0 \\ -5 & 6 & 1 \end{pmatrix} = \begin{pmatrix} 15 & -5 & 10 \\ 20 & 10 & 0 \\ -25 & 30 & 5 \end{pmatrix}$$

Каждый элемент матрицы умножается или делится на это число

СЛОЖЕНИЕ И ВЫЧИТАНИЕ МАТРИЦ

ОДИНАКОВОГО РАЗМЕРА

$$\begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 0 \end{pmatrix} \pm \begin{pmatrix} 8 & -5 & 5 \\ 7 & 3 & 14 \end{pmatrix} = \\
= \begin{pmatrix} 3 \pm 8 & -1 \pm (-5) & 2 \pm 5 \\ 4 \pm 7 & 2 \pm 3 & 0 \pm 14 \end{pmatrix}$$

$$c_{ij} = a_{ij} \pm b_{ij}$$

ТРАНСПОНИРОВАНИЕ МАТРИЦЫ

$$A = \begin{pmatrix} 12 & 4 \\ -17 & 29 \\ -30 & -36 \end{pmatrix}$$
 Исходная матрица (размер 3 на 2)

$$A^{T} = \begin{pmatrix} 12 & -17 & -30 \\ 4 & 29 & -36 \end{pmatrix}$$
 Транспонированная матрица (размер 2 на 3)

В Excel функция =ТРАНСП(А2:В4)

ТРАНСПОНИРОВАНИЕ МАТРИЦЫ

Транспонировать матрицы можно произвольной размерности, так как при транспонировании строки и столбцы меняются местами. Чтобы выполнять транспонирование матрицы A:

Вызываем мастер функций и в категории «Полный алфавитный перечень находим функцию «ТРАНСП» и нажимаем ОК.

- 4. В появившемся окне вводим диапазон значений исходной матрицы.
- 5. Для получения результата зажимаем клавиши «Shift» + «Ctrl», и не отпуская их нажимаем клавишу «Enter».

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ

* Скалярное произведение вектор-строки на векторстолбец применяется при умножении матриц

$$(a \ b \ c) \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = a \cdot x + b \cdot y + c \cdot z$$

$$(2 -1 3) \times \begin{bmatrix} 4 \\ 2 \\ -3 \end{bmatrix} = 2 \cdot 4 + (-1 \cdot 2) + 3 \cdot (-3) = 8 \cdot 2 \cdot 9 = -3$$

УМНОЖЕНИЕ СТРОКИ НА СТОЛБЕЦ или СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ

$$A = \begin{bmatrix} 2 & 3 & -1 \\ 6 & 1 & -2 \end{bmatrix} B = \begin{bmatrix} 4 & -5 \\ -3 & 0 \\ 1 & 2 \end{bmatrix}$$

$$A \times B = \begin{bmatrix} 6 \times 4 = 24 \\ 1 \times -3 = -3 \\ -2 \times 1 = -2 \\ 24 - 3 - 2 = 19 \end{bmatrix}$$

Обратная матрица

Если существуют квадратные матрицы X и А одного порядка, удовлетворяющие условию:

X*A=A*X=E

Где E – единичная матрица того же порядка (размера) что и матрица A, то матрица X называется обратной к матрице A и обозначается A⁻¹.

В Excel функция =МОБР(А2:В4)

Обратная матрица -Х

Каждая квадратная матрица с определителем не равным о имеет обратную матрицу и только одну Как найти обратную матрицу X? Зная, что:

$$\sum_{k=1}^{n} a_{ik} \cdot x_{kj} = e_{ij}, i = (1,n), j = (1,n),$$
 $e_{ij} = 0$, если $i \neq j$ $e_{ij} = 1$, e

Обратная матрица

Получаем систему уравнений

$$\begin{cases} a_{11}x_{1j} + a_{12}x_{2j} + \dots + a_{1n}x_{nj} = 0 \\ a_{j1}x_{1j} + a_{j2}x_{2j} + \dots + a_{jn}x_{nj} = 0 \\ a_{n1}x_{1n} + a_{n2}x_{2n} + \dots + a_{nn}x_{nj} = 0 \end{cases}$$

Решив систему, можем найти элементы обратной матрицы X

Поиск обратной матрицы пример

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}, \mu a \tilde{u} m u A^{-1}$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} a_{11}x_{11} + a_{12}x_{21} = e_{11} = 1 \\ a_{11}x_{12} + a_{12}x_{22} = e_{12} = 0 \\ a_{21}x_{11} + a_{22}x_{21} = e_{21} = 0 \\ a_{21}x_{12} + a_{22}x_{22} = e_{22} = 1 \end{cases} \begin{cases} x_{11} + 2x_{21} = 1 \\ x_{12} + 2x_{22} = 0 \\ 3x_{11} + 4x_{21} = 0 \\ 3x_{11} + 4x_{21} = 0 \\ 3x_{12} + 4x_{22} = 1 \end{cases} \begin{cases} x_{11} = -2 \\ x_{12} = 1 \\ x_{21} = 3/2 \\ x_{22} = -1/2 \end{cases}$$

В итоговой матрице — строк как в первой матрице A, а столбцов как во второй матрице В

$$A^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$

УМНОЖЕНИЕ СТОЛБЦА НА СТРОКУ

$$\begin{pmatrix} 7 \\ 0 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \cdot 2 \\ 0 \cdot 2 \\ (-4) \cdot 2 \\ (-4) \cdot \begin{pmatrix} -5 \\ 0 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ (-4) \cdot 3 \end{pmatrix} = \begin{pmatrix} 14 \\ -35 \\ 21 \\ 0 \\ 0 \\ -8 \\ 20 \\ -12 \end{pmatrix}$$

УМНОЖЕНИЕ МАТРИЦЫ НА СТОЛБЕЦ

КАЖДАЯ СТРОКА МАТРИЦЫ СКАЛЯРНО УМНОЖАЕТСЯ НА СТОЛБЕЦ

$$\begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 0 \\ -5 & 6 & 1 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 7 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \cdot 8 + (-1) \cdot 7 + 2 \cdot 2 \\ 4 \cdot 8 + 2 \cdot 7 + 0 \cdot 2 \\ (-5) \cdot 8 + 6 \cdot 7 + 1 \cdot 2 \end{pmatrix} = \begin{pmatrix} 21 \\ 46 \\ 4 \end{pmatrix}$$

В Excel функция = МУМНОЖ(A2:B4; D2:G4)

ВОЗМОЖНОСТЬ УМНОЖЕНИЯ МАТРИЦЫ НА МАТРИЦУ

МАТРИЦУ *А*, ЗАПИСАННУЮ СЛЕВА, МОЖНО УМНОЖИТЬ НА МАТРИЦУ *В*, ЗАПИСАННУЮ СПРАВА, ТОГДА И ТОЛЬКО ТОГДА, КОГДА

ЧИСЛО СТОЛБЦОВ МАТРИЦЫ *А* РАВНО ЧИСЛУ СТРОК МАТРИЦЫ *В*

Число столбцов 1-ой =числу строк 2-ой

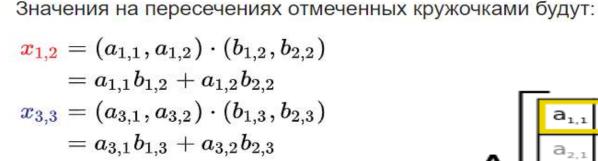
ПРАВИЛО УМНОЖЕНИЯ МАТРИЦЫ НА МАТРИЦУ

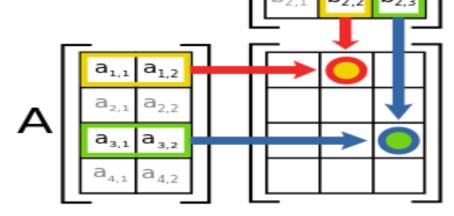
КАЖДАЯ СТРОКА ЛЕВОЙ МАТРИЦЫ СКАЛЯРНО УМНОЖАЕТСЯ НА КАЖДЫЙ СТОЛБЕЦ ПРАВОЙ МАТРИЦЫ

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Произведение матриц *AB* состоит из всех возможных комбинаций скалярных произведений вектор-строк матрицы *A* и вектор-столбцов матрицы *B*. Элемент матрицы *AB* с индексами *i*, *j* есть скалярное произведение *i*-ой вектор-строки матрицы *A* и *j*-го вектор-столбца матрицы *B*.

Иллюстрация справа демонстрирует вычисление произведения двух матриц *A* и *B*, она показывает как каждые пересечения в произведении матриц соответствуют строкам матрицы *A* и столбцам матрицы *B*. Размер результирующей матрицы всегда максимально возможный, то есть для каждой строки матрицы *A* и столбца матрицы *B* есть всегда соответствующее пересечение в произведении матрицы.



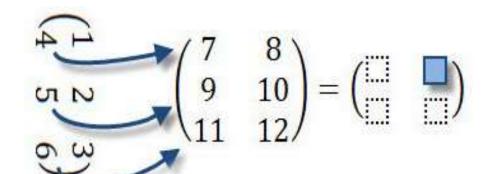


$$egin{bmatrix} 3 imes 4 & ext{matrix} \ \cdot & \cdot & \cdot & a \ \cdot & \cdot & \cdot & b \ \cdot & \cdot & \cdot & c \ 1 & 2 & 3 & 4 \end{bmatrix} egin{bmatrix} 4 imes 5 & ext{matrix} \ \cdot & \cdot & a \ \cdot & \cdot & b \ \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 2 & 0 & 0 & 0 & 0 \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \cdot & \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes 5 & ext{matrix} \ \cdot & \cdot & \cdot & c \ \end{array} egin{bmatrix} 3 imes$$

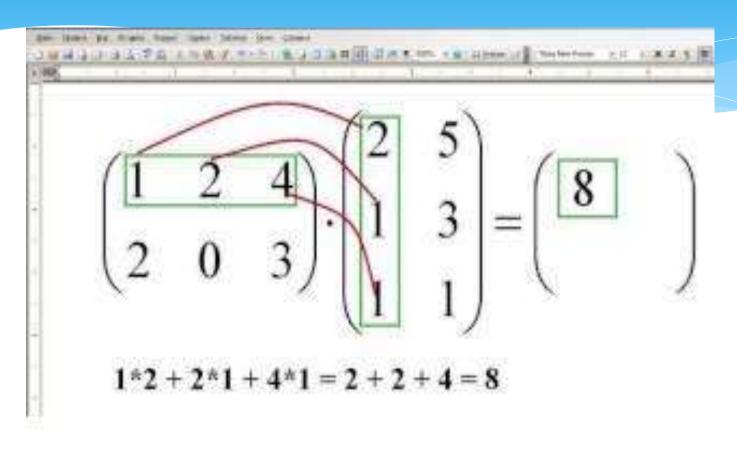
Произведение матриц и их размеры

m×n n×k m×k

В итоговой матрице — строк как в первой матрице A, а столбцов как во второй матрице В



Умножение матриц



В итоговой матрице – строк как в первой матрице А – две , а столбцов как во второй матрице В - два

ПРИМЕР УМНОЖЕНИЯ МАТРИЦ

$$AB = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} =$$

$$= \begin{pmatrix} 2+15 & 0-6 \\ 4-5 & 0+2 \end{pmatrix} = \begin{pmatrix} 17 & -6 \\ -1 & 2 \end{pmatrix}$$

$$BA = \begin{pmatrix} 1 & 0 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} =$$

$$= \begin{pmatrix} 2+0 & 3+0 \\ 10-8 & 15+2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 2 & 17 \end{pmatrix}.$$

ПРИМЕР УМНОЖЕНИЯ МАТРИЦ

3 столбца

3 строки

$$\begin{vmatrix} 3 & -1 & 2 \\ 4 & 2 & 0 \\ -5 & 6 & 1 \end{vmatrix} \cdot \begin{vmatrix} 8 & 1 \\ 7 & 2 \\ 2 & -3 \end{vmatrix} =$$

$$= \begin{vmatrix} 3 \cdot 8 + (-1) \cdot 7 + 2 \cdot 2 & 3 \cdot 1 + (-1) \cdot 2 + 2 \cdot (-3) \\ 4 \cdot 8 + 2 \cdot 7 + 0 \cdot 2 & 4 \cdot 1 + 2 \cdot 2 + 0 \cdot (-3) \\ (-5) \cdot 8 + 6 \cdot 7 + 1 \cdot 2 & (-5) \cdot 1 + 6 \cdot 2 + 1 \cdot (-3) \end{vmatrix} = \begin{vmatrix} 21 & -5 \\ 46 & 8 \\ 4 & 4 \end{vmatrix}$$

В Excel функция

=МУМНОЖ(диапазон1; диапазон2)

ВАЖНЫЕ ТИПЫ КВАДРАТНЫХ МАТРИЦ

$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 Нулевая матрица (размер 3 на 3)

СВОЙСТВО ЕДИНИЧНОЙ МАТРИЦЫ:

 $A \bullet E = E \bullet A = A$

$$\begin{pmatrix} 5 & 7 & 4 \\ 3 & -6 & 8 \\ 11 & 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 7 & 4 \\ 3 & -6 & 8 \\ 11 & 4 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 5 & 7 & 4 \\ 3 & -6 & 8 \\ 11 & 4 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 7 & 4 \\ 3 & -6 & 8 \\ 11 & 4 & 0 \end{pmatrix}$$

Определитель матрицы

Правило: Для матрицы первого порядка значение определителя равно значению элемента этой матрицы:

$$\Delta = |a_{11}| = a_{11}$$

Вычисление определителя матрицы 2×2

Правило: Для матрицы 2×2 значение определителя равно разности произведений элементов главной и побочной диагоналей:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Пример 1. Найти определитель матрицы А

$$A = \left[\begin{array}{cc} 5 & 7 \\ -4 & 1 \end{array} \right]$$

Решение:

$$\det(A) = \begin{vmatrix} 5 & 7 \\ -4 & 1 \end{vmatrix} = 5 \cdot 1 - 7 \cdot (-4) = 5 + 28 = 33$$

Особенные матрицы

* Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.

В - особенная или вырожденная матрица

$$|B| = \begin{vmatrix} 1 & -2 \\ 3 & -6 \end{vmatrix} = -6 + 6 = 0.$$

А – неособенная или невырожденная матрица

$$|A| = \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = 2*3-1*2=4$$

Определитель матрицы

$$A = \begin{vmatrix} -2 & 5 \\ 7 & 3 \end{vmatrix} = -2 * 3 - 7 * 5 = -41$$

$$C = \begin{vmatrix} 4 & -8 \\ 3 & 2 \end{vmatrix} - ?$$

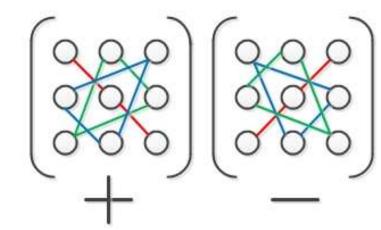
$$D = \begin{vmatrix} 2 & -3 \\ -1 & 9 \end{vmatrix} - ?$$

В Excel функция =МОПРЕД(А2:В4)

Ответы: 32, 15

Определитель матрицы 3-го порядка

Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.



Определитель матрицы 3-го порядка

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33}$$

Пример 2. Найти определитель матрицы А

$$A = \left(\begin{array}{rrr} 5 & 7 & 1 \\ -4 & 1 & 0 \\ 2 & 0 & 3 \end{array} \right)$$

Решение:

$$\det(\mathbf{A}) = \begin{vmatrix} 5 & 7 & 1 \\ -4 & 1 & 0 \\ 2 & 0 & 3 \end{vmatrix} = 5 \cdot 1 \cdot 3 + 7 \cdot 0 \cdot 2 + 1 \cdot (-4) \cdot 0 - 1 \cdot 1 \cdot 2 - 5 \cdot 0 \cdot 0 - 7 \cdot (-4) \cdot 3 =$$

$$= 15 + 0 + 0 - 2 - 0 + 84 = 97$$

Решение систем линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$\left(a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_n\right)$$

Найти x_1, x_2, x_n

Матричный метод решения систем линейных уравнений

Матричный метод применим к системам уравнений, где число уравнений равно числу неизвестных. Пусть дана система уравнений. Составим по ней матрицы A, B и X.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n$$

Матричный метод

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Систему уравнений можно записать так:

$$A\cdot X=B$$
 $A^{-1}\cdot A\cdot X=A^{-1}\cdot B$ $A^{-1}\cdot A=E,$ тогда $E\cdot X=A^{-1}\cdot B$ $X=A^{-1}\cdot B$

Решение системы матричным методом

$$X = A^{-1} \cdot B$$

$$\begin{cases} 5x - y - z = 0 \\ x + 2y + 3z = 14 \\ 4x + 3y + 2z = 16 \end{cases} A = \begin{pmatrix} 5 & -1 & -1 \\ 1 & 2 & 3 \\ 4 & 3 & 2 \end{pmatrix} B = \begin{pmatrix} 0 \\ 14 \\ 16 \end{pmatrix} X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Найдем обратную матрицу к А

$$A^{-1} = \begin{pmatrix} 1/6 & 1/30 & 1/30 \\ -1/2 & -7/15 & 8/15 \\ 1/6 & 19/30 & -11/30 \end{pmatrix}$$

Решение системы матричным методом

$$X = A^{-1} \cdot B$$

Умножим обратную матрицу на В

$$A^{-1} \cdot B = \begin{pmatrix} 1/6 & 1/30 & 1/30 \\ -1/2 & -7/15 & 8/15 \\ 1/6 & 19/30 & -11/30 \end{pmatrix} \times \begin{pmatrix} 0 \\ 14 \\ 16 \end{pmatrix} =$$

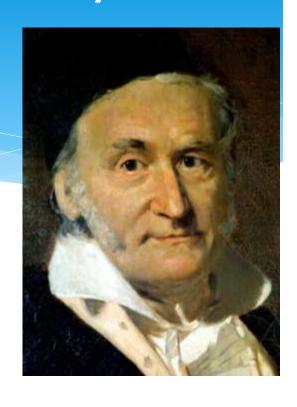
OTBET:
$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Иоганн Карл Фридрих Гаусс

(1777-1855)

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом.

В три года он умел читать и писать. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат 50х101=5050.



После 1801 года Гаусс включил в круг своих интересов естественные науки. Катализатором послужило открытие малой планеты Церера, которая вскоре после наблюдений потерялась. 24-летний Гаусс проделал (за несколько часов) сложнейшие вычисления по новому, открытому им же методу, и указал место, где искать беглянку; там она, к общему восторгу, и была вскоре обнаружена.

Метод Гаусса — классический метод решения системы линейных уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \end{cases}$$

$$\begin{cases} a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

Система т линейных уравнений с п неизвестными

Система линейных уравнений называется совместной, если она имеет решение, и несовместной, если она не имеет решения.

Совместная система называется определенной, если она имеет единственное решение и неопределенной, если она имеет бесчисленное множество решений.

Две совместные системы называются **равносильными,** если они имеют одно и то же множество решений.

Элементарные преобразования

К элементарным преобразованиям системы отнесем следующее:

- * перемена местами двух любых уравнений;
- * умножение обеих частей любого из уравнений на произвольное число, отличное от нуля;
- * прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число.

Рассмотрим метод Гаусса для системы трех линейных уравнений

Для случая, когда существует единственное решение.

Дана система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

(1)

Ее надо привести к треугольному виду

$$\begin{cases} x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 = b_1^{(1)} \\ x_2 + a_{23}^{(2)} x_3 = b_2^{(2)} \\ x_3 = b_3^{(3)} \end{cases}$$

Обратный ход: затем с конца вычисляем значение переменных X_2 , X_1

Рассмотрим метод Гаусса для системы трех линейных уравнений

1-ый шаг метода Гаусса

На первом шаге исключим неизвестное x_1 из всех уравнений системы (1), кроме первого. Разделим первое уравнение системы (1) на a_{11} . Получим уравнение:

где

$$a_{1j}^{(1)} = \frac{a_{1j}}{a_{11}}$$
; $j = 1,2,3$; $b_1^{(1)} = \frac{b_1}{a_{11}}$

Исключим x_1 из второго и третьего уравнений системы (1). Для этого вычтем из них уравнение (2), умноженное на коэффициент при x_1 (соответственно a_{21} и a_{31}).

Система примет вид:

$$x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 = b_1^{(1)}$$
 (2)

Верхний индекс ⁽¹⁾ указывает, что речь идет о коэффициентах первой преобразованной системы.

$$x_{1} + a_{12}^{(1)} x_{2} + a_{13}^{(1)} x_{3} = b_{1}^{(1)}$$

$$a_{22}^{(1)} x_{2} + a_{23}^{(1)} x_{3} = b_{2}^{(1)}$$

$$a_{32}^{(1)} x_{2} + a_{33}^{(1)} x_{3} = b_{3}^{(1)}$$
(3)

$(x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 = b_1^{(1)})$ $a_{22}^{(1)}x_2 + a_{23}^{(1)}x_3 = b_2^{(1)}$ $a_{32}^{(1)}x_2 + a_{33}^{(1)}x_3 = b_3^{(1)}$

2-ой шаг метода Гаусса

На втором шаге исключим неизвестное x_2 из третьего уравнения системы (3). Разделим на а22 второе уравнение системы (3), получим уравнение:

$$x_2 + a_{23}^{(2)} x_3 = b_2^{(2)}$$
 (4)

где

$$a_{23}^{(2)} = \frac{a_{23}^{(1)}}{a_{22}^{(1)}}; \qquad b_{2}^{(2)} = \frac{b_{2}^{(1)}}{a_{22}^{(1)}}$$

Из третьего уравнения системы (3) вычтем уравнение (4),

получим уравнение:

$$a_{33}^{(2)} \bullet x_3 = b_3^{(2)}$$

Предполагая, что $a_{33}^{(2)} \neq 0$, находим $x_3 = \frac{b_3^{(2)}}{a_{33}^{(2)}} = b_3^{(3)}$

$$x_3 = \frac{b_3^{(2)}}{a_{33}^{(2)}} = b_3^3$$

В результате преобразований система приняла вид:

$$\begin{cases} x_1 + a_{12}^{(1)} x_2 + a_{13}^{(1)} x_3 = b_1^{(1)} \\ x_2 + a_{23}^{(2)} x_3 = b_2^{(2)} \\ x_3 = b_3^{(3)} \end{cases}$$
(5)

Система вида (5) называется треугольной.

Процесс приведения системы (1) к треугольному виду (5) (шаги 1 и 2) называют **прямым ходом метода Гаусса.**

Нахождение неизвестных из треугольной системы называют обратным ходом метода Гаусса.

Для этого найденное значение x_3 подставляют во второе уравнение системы (5) и находят x_2 . Затем x_2 и x_3 подставляют в первое уравнение и находят x_4 .

Если в ходе преобразований системы получается противоречивое уравнение вида o = b, где $b \neq o$, то это означает, что система несовместна и решений не имеет.

В случае совместной системы после преобразований по методу Гаусса, составляющих прямой ход метода, система минейных уравнений с и неизвестными будет приведена или к

Треугольная система имеет вид:

Такая система имеет единственное решение, которое находится в результате проведения обратного хода метода Гаусса.

треугольному или к ступенчатому виду.

Ступенчатая система имеет вид:

Такая система имеет бесчисленное множество решений.

$$x_{1} + c_{12}x_{2} + \dots + a_{1n}x_{n} = d_{1}$$

$$x_{2} + \dots + a_{2n}x_{n} = d_{2}$$

$$\dots$$

$$x_{n} = d_{n}$$

$$\begin{cases} x_1 + c_{12}x_2 + \dots + c_{1n}x_n = d_1 \\ x_2 + \dots + c_{2n}x_n = d_2 \end{cases}$$

$$\vdots$$

$$x_k + \dots + c_{kn}x_n = d_k$$

Пример решения уравнений методом Гаусса

- Решение системы из трех уравнений методом Гаусса
- 2. Поделим первое уравнение на 2, затем вычтем его из второго (a_{21} =1, поэтому домножение не требуется) и из третьего, умножив предварительно на а₃₁=3

$$\begin{cases} 2x_1 + x_2 + 4x_3 = 16 \\ x_1 + 2.5x_2 + 6x_3 = 24 \\ 3x_1 + 6x_2 + x_3 = 18 \end{cases}$$

$$\begin{cases}
2x_1 + x_2 + 4x_3 = 16 \\
x_1 + 2,5x_2 + 6x_3 = 24 \\
3x_1 + 6x_2 + x_3 = 18
\end{cases}
\begin{cases}
x_1 + 0,5x_2 + 2x_3 = 8 \\
x_1 + 2,5x_2 + 6x_3 = 24 \\
3x_1 + 6x_2 + x_3 = 18
\end{cases}$$

Вычтем 1 из 2

$$\begin{cases} x_1 + 0.5x_2 + 2x_3 = 8 \\ 2x_2 + 4x_3 = 16 \\ 3x_1 + 6x_2 + x_3 = 18 \end{cases}$$

$$3x_1+1,5x_2+6x_3=24\ (1yp*3)$$
 $x_1+0,5x_2+2x_3=8$ $2x_2+4x_3=16$ $4,5x_2-5x_3=-6$

$$x_1 + 0.5x_2 + 2x_3 = 8$$
 $2x_2 + 4x_3 = 16$
 $4.5x_2 - 5x_3 = -6$

Пример решения уравнений методом Гаусса

3. Поделим второе уравнение полученной системы на 2, а затем вычтем его из третьего, умножив предварительно на 4,5 (коэффициент при x_2)

$$\begin{cases} x_1 + 0.5x_2 + 2x_3 = 8 \\ x_2 + 2x_3 = 8 \end{cases}$$
 4.5x₂+9x₃= 36 (2yp *4.5)
4.5x₂-5x₃= -6

$$\begin{cases} x_1 + 0.5x_2 + 2x_3 = 8 \\ x_2 + 2x_3 = 8 \end{cases} \begin{cases} x_3 = -42/(-14) = 3; \\ x_2 = 8 - 2x_3 = 2 \\ x_1 = 8 - 0.5x_2 - 2x_3 = 1 \end{cases}$$

Исходная система:

$$\begin{cases} 2x_1 + x_2 + 4x_3 = 16 \\ x_1 + 2.5x_2 + 6x_3 = 24 \\ 3x_1 + 6x_2 + x_3 = 18 \end{cases}$$

Решение системы:

$$\begin{cases} x_1 = 3 \\ x_2 = 2 \\ x_3 = 1 \end{cases}$$

Метод Крамера 1704-1752 Швейцария, Франция

Метод Крамера - способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.

Рассмотрим систему линейных уравнений с квадратной матрицей А, т.е. такую, у которой число уравнений совпадает с числом неизвестных:

Система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Система имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0$$

Алгоритм метода Крамера

- 1) △- найти определитель матрицы А,
- 2) \triangle і найти определители матриц, подставляя в соответствующий столбец k матрицы вектор-столбец правых частей системы b_i ,
- 3) найти x_1, x_2, x_3 и x_4 : $x_i = \triangle i / \triangle$

Пример. Решить систему уравнений:

$$\begin{cases} 2x_1 +3x_2 +11x_3 +5x_4 = 2, \\ x_1 +x_2 +5x_3 +2x_4 = 1, \\ 2x_1 +x_2 +3x_3 +2x_4 = -3, \\ x_1 +x_2 +3x_3 +4x_4 = -3. \end{cases}$$

Определитель матрицы $\triangle = 14$

Метод Крамера в Excel

									_	_											
1			А			В				. 0		4				0					
2	2	3	11	5		2				$+3x_{2}$											
3	1	1	5	2		1		. (A)	x_1												
4	2	1	3	2		-3				$+x_2$											
5	1	1	3	4		-3		(:	x_1	$+x_2$	+	$3x_3$	+43	r ₄ =	= -	-3.					
6		Δ																			
7	Определитель А																				
8	14	4																			
9											Δi		•								
10	2	3	11	5		2	2	11	5		2	3	2	5		2	3	11	2		
11	1	1	5	2		1	1	5	2		1	1	1	2		1	1	5	1		
12	-3	1	3	2		2	-3	3	2		2	1	-3	2		2	1	3	-3		
13	-3	1	3	4		1	-3	3	4		1	1	-3	4		1	1	3	-3		
14																					
15	Определитель А1						Определитель А2					Определитель А3					Определитель А4				
16	-28					0					14					-14					
17																					
18	X1	-2			_ ^ :/	^															
19	X2	0		Xi	= ∆i /	\triangle															
20	Х3	1																			
21	Х4	-1																			