

Основы математической обработки информации

Множества

Вещественные

Рациональные

Z Целые

Натуральные

С -комплексные: 2+3і

R -действительные: $\sqrt{3}$, е, π

Q -рациональные: ½, 3/4,

Z -целые: -3,-2,0,1,2,3...

N -натуральные: 0,1,2,3...N

NAME OF THE PARTY OF THE PARTY

План лекции

- 1. Множество, его описание, мощность множества
- 2. Конечные и бесконечные множества
- 3. Равенство множеств
- 4. Универсальное, пустое множество, множество-
- 5. Геометрическая интерпретация множеств
- 6. Алгебра множеств и операции над множествами
- 7. Биекция, сюръекция, инъекция
- 8. Законы алгебры множеств
- 9. Решение задач

1.Множество. Элементы множества

Множество — это совокупность объектов, обладающих определенным свойством, объединенных в единое целое. (Георг Канторнемецкий математик, ввел это понятие)

Элементы множества — это объекты, которые образуют данное множество, могут обладать некоторыми свойствами и находиться в некоторых отношениях между собой или с элементами других множеств.

множество	элемент		
Множество четырехугольников	Трапеция, параллелограмм, ромб, квадрат, прямоугольник		
Пространственные тела	Шар, прямоугольный параллелепипед, призма, пирамида, октаэдр		
Натуральные числа	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11		
Квадраты чисел	1, 4, 9, 16, 25, 36, 49, 64, 81, 100		
Цифры десятичной системы счисления	0, 1, 2, 3, 4, 5, 6, 7, 8, 9		
Двузначные четные числа	10, 12, 14, 16 96, 98		

Обозначения числовых множеств

- N множество натуральных чисел;
- **Z** множество целых чисел;
- Q множество рациональных чисел;
- R множество действительных чисел.

NAME OF THE PARTY OF THE PARTY

Обозначения

Множества обозначают заглавными, а элементы множеств — строчными латинскими буквами или строчными латинскими буквами с индексами.

Запись $A = \{a,b,d,h\}$ означает, что множество A состоит из четырех элементов a, b, d, h.

Утверждение, что конечное множество A состоит из n элементов, записывается так:

$$A = \{a_1, a_2, ..., a_n\}.$$

Обозначения

Существует два основных способа задания неупорядоченных множеств:

- а) перечисление всех его элементов;
- б) описание характеристического (общего) свойства его элементов

Принадлежность элемента множеству обозначается символом ϵ : $a \in A$ (читают: элемент a принадлежит множеству A).

В противном случае обозначают $a \notin A$ (читают: элемент a не принадлежит множеству A).

Элементами множеств могут быть другие множества, эти элементы могут обозначаться заглавными буквами.

WIS/

Обозначения

Пример

A = {D,C}, D={a, b}, C={c, d, e}.

При этом $D \in A$, $C \in A$, но $a \notin C$ и $c \notin D$.

Пример

 $A = \{\{x,y\},z\}.$

Эта запись означает, что множество A содержит два элемента: множество $\{x,y\}$ и элемент z.

Способы задания множеств

Перечислением элементов

$$A = \{a_1, a_2, ..., a_n\}.$$

Пример

Множество отличников в классе 10а обозначим Z_{10a} и зададим его перечислением:

 $Z_{10a} = { Иванов, Петров, Сидоров, Кукушкина }$

Способы задания множеств

Определяющим свойством

Множество $X = \{x \mid P(x)\}$, где P(x) означает, что элемент х обладает свойством P(x).

Пример

Множество N_{10} всех натуральных чисел, меньших 10 можно задать так:

$$N_{10} = \{x \mid x \in \mathbb{N}, x < 10\}.$$

Способы задания множеств

Рекурсивно

Множество значений рекурсивной функции является рекурсивно — заданным множеством

Рассмотрим функцию факториал f=n!

Чтобы найти 5! надо знать 4!, чтобы найти 3!, надо знать 2!, чтобы найти 2!, надо знать 1!

$$F = \{f_1, f_2, f_3, ...\}.$$
 $f_1 = 1$
 $f_2 = 1*2=2$

Tak,
$$f_3 = f_1 * f_2 * 3 = 3 * 2 * 1 = 6$$

Мощность множества

Число элементов в *конечном* множестве M называется mouностью M и обозначается M.

Пример

Пусть задано множество $A = \{x/5 \le x \le 10, x \in N\}$, тогда |A| = 6

Пример

- В множество всех видов шахматных фигур,
- С множество всех шахматных фигур, участвующих в одной игре.
- |B|=6 (пешка, ладья, слон, конь, ферзь, король)
 - |C|= 32 (16 белых и 16 черных).

NATE AND ADDRESS OF THE PARTY O

Численность множества

Пусть A и B — конечные множества. Число элементов множества A условимся обозначать символом m(A) и называть **численностью** множества A.

Число элементов объединения и разности двух конечных множеств:

Определим численность объединения множеств А и В.

Если множества A и B не пересекаются, то $m(A \cup B) = m(A) + m(B)$.

Таким образом, численность объединения конечных непересекающихся множеств равна сумме численностей этих множеств.

Если множества A и B пересекаются, то в сумме m(A) + m(B) число элементов пересечения $A \cap B$ содержится дважды: один раз в m(A), а другой — в m(B). Поэтому, чтобы найти численность объединения $m(A \cup B)$, нужно из указанной суммы вычесть $m(A \cap B)$.

Таким образом: $m(A \cup B) = m(A) + m(B) - m(A \cap B)$

Определим теперь численность разности множеств A и B.

Если множества A и B не пересекаются, то $A \setminus B = A$, и поэтому $m(A \setminus B) = m(A)$.

Если множества A и B пересекаются, то $m(A \backslash B) = m(A) - m(A \cap B)$.

Если $B \subset A$, то $A \cap B = B$, и, следовательно, $m(A \setminus B) = m(A) - m(B)$.

2. Конечные и бесконечные множества

Множество называется *конечным*, если оно содержит конечное число элементов и *бесконечным*, если оно содержит неограниченное число элементов.

Пример.

Множество $A=\{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$ цифр в десятичной системе счисления конечно.

Множество натуральных чисел конечно

Множество звезд, планет, точек окружности или отрезка **бесконечно**.

Счетные множества

Множество A называется *счетным*, если оно эквивалентно натуральному ряду N ($A \sim N$).

Например, множество букв русского алфавита является счетным (каждую букву можно пронумеровать и посчитать)

1	2	3	4	5	•••	32
A	Б	В	Γ	Γ		R

Счетные множества

Множество четных натуральных чисел $N_u=\{2,4,...,m,...\}$, всех натуральных чисел $N=\{1,2,...,n,...\}$, целых чисел Z и рациональных чисел Q последовательно вложены:

$$N_{\mathbf{u}} \subset N \subset \mathbb{Z} \subset \mathbb{Q}$$
.

Хотя для любых двух из этих множеств нет равенства, они эквивалентны друг другу, то есть, имеют одинаковую мощность и являются счетными:

$$|N_{u}| = |N| = |Z| = |Q|$$
.

Бесконечные множества.

Несчетные, континуальные множества

Существуют бесконечные несчетные множества, и их мощность естественно считать большей, чем |N|.

Множество точек отрезка $[0, 1] = \{x \in \mathbb{R}; 0 \le x \le 1\}$ не является счетным (теорема Γ . Кантора).

Его мощность называется континуум и обозначается малой буквой c: |[0, 1]| = c.

Множество [0, 1] и любое эквивалентное ему множество называются континуальными.

NAME OF THE PARTY OF THE PARTY

Бесконечные множества.

Континуальные множества

На вещественной оси *R* континуальными (и значит эквивалентными друг другу и отрезку [0, 1]) являются, например, множества:

- \bullet [a,b],
- •(a, b), при любом a < b;
- \bullet $(0, +\infty);$
- •множество $(-\infty, +\infty)$, равное R.

Континуальны также множества точек любого квадрата и круга на плоскости \mathbb{R}^2 , параллелепипеда и шара в пространстве \mathbb{R}^3 и самого пространства \mathbb{R}^3 .

Эквивалентность для бесконечных множеств

Сравнение бесконечных множеств осуществляют с помощью понятия взаимно однозначного соответствия между их элементами.

Пусть даны два множества Х и Ү. Говорят, что между множествами Х и Ү установлено взаимно однозначное соответствие, если каждому

 $x \in X$ сопоставлен единственный элемент $y \in Y$, причем каждый элемент $y \in Y$ оказывается сопоставленным одному и только одному

x ∈ X. Соответствие между элементами x∈X и y∈Y, обозначается x~y.

Определение. Два множества X и Y называются эквивалентными или имеющими одинаковую мощность (обозначается X~Y), если между множествами X и Y может быть установлено взаимно однозначное соответствие.

Ясно, что два конечных множества эквивалентны тогда и только тогда, когда они состоят из одного и того же числа элементов, так что понятие одинаковой мощности есть обобщение понятия одинаковой численности конечных множеств.

Эквивалентность для бесконечных множеств

Эквивалентные множества называют *равномощными*, что обозначается так: |A| = |B|.

1. Множество натуральных чисел $N = \{1, 2, ...\}$ эквивалентно множеству всех четных чисел $P = \{2, 4, ...\}$.

Соответствие между ними осуществляется по правилу

$$n \leftrightarrow 2n$$

Каждому элементу N соответствует удвоенный элемент из P

2. Любые два отрезка [a,b] и [a+h,b+h] равной длины b-a эквивалентны.

Соответствие осуществляется по формуле

$$[x \in [a, b]] \leftrightarrow [y = x + h \in [a + h, b + h]].$$

3. Отрезок [0,1] эквивалентен отрезку [a,b].

Соответствие осуществляется по формуле

$$[x \in [0,1]] \leftrightarrow [y = a + (b-a)x \in [a,b]].$$

Упорядоченные множества

Упорядоченным считается такое множество, в котором важен порядок следования элементов.

Например, упорядоченным является множество, в котором каждый элемент имеет свой порядковый номер.

Обозначают упорядоченное множество, как правило, либо круглыми, либо треугольными скобками.

A=<1,2,3>, в общем случае: $A=<a_1,a_2,...,a_n>$, $n\in N$; B=(a,b,c,d,e).

MITC/ MOMS/ Moms/

Подмножество

Множество A, все элементы которого принадлежат множеству B, называется *подмножеством* множества B.

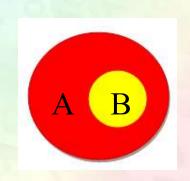
Обозначение: А СВ; А СВ.

Пример.

A — множество действительных чисел;

B — множество натуральных чисел.

Множество B является подмножеством множества A.



3. Равенство множеств

Неупорядоченные множества *равны*, если они содержат одинаковый набор элементов. **Равные множества** — это **множества**, которые включают в себя одни и те же элементы, то есть являются эквивалентными по отношению друг к другу.

Обозначается A = B.

Если множества не равны, это обозначается $A \neq B$.

Равны ли множества?

Верно ли записано равенство? Почему?

$$\{ \bullet; \bigcirc; \bigcirc; \triangle \} = \{ \bullet; \bigcirc; \bigcirc \}$$

да, нет

$$\{\triangle;\bigcirc;\Box;\blacksquare\}=\{\triangle;\Box;\bigcirc;\bigcirc\}$$

ДА, НЕТ

Равенство множеств. Двухстороннее включение

A = B тогда и только тогда, когда из условия $x \in A$ следует $x \in B$ и из условия $y \in B$ следует $y \in A$.

Пример

Пусть заданы множества

$$A = \{1,2,3,4,5\};$$

В – множество натуральных чисел от 1 до 5;

$$C = \{c \mid 1 \le c \le 5, c \in N\};$$

 $D = \{4,1,5,2,3\}.$

Эти множества содержат один набор элементов, поэтому

$$A=B=C=D$$

Равенство множеств

Пример

Пусть заданы множества:

A={Иванов, Петров, Сидоров}; B={Иванов, Петров, Сидоров}.

A = B, если речь идет об одних и тех же людях. В противном случае A ≠ B.

Равенство множеств

Пример

Пусть A - множество остатков, получаемых при последовательном делении натуральных чисел $\{3, 4, 5, 6, \ldots\}$ на 3:

$$A = \{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, \ldots\}.$$

Это множество содержит всего три элемента:

Поэтому его можно записать в виде

$$A = \{0, 1, 2\}.$$

Строгое и нестрогое включение

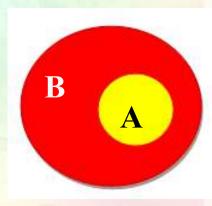
Нестрогое включение обозначается $A \subseteq B$, означает, что A — подмножество множества B, возможно совпадающее с B.

Строгое включение обозначается $A \subset B$, и означает, что A — подмножество множества B, не совпадающее с B.

В -красный круг, А- желтый

А В читается

«Множество А включено в В».



Строгое и нестрогое включение

Равенство множеств

Выполнение соотношений $A \subseteq B$ и $B \subseteq A$ возможно только при A = B.

A = B, если $A \subseteq B$ и $B \subseteq A$.

Эти соотношения являются признаком равенства множеств через отношение включения.

Иногда в литературе символом с обозначают "нестрогое" включение, допускающее и равенство множеств. В этом случае символ с не используется, а строгое включение записывают двумя соотношениями А с В, А ≠ В.

Строгое и нестрогое включение

Пример

Х – множество студентов группы,

Y – множество отличников в группе.

Тогда объясните значение записей:

$$Y \subseteq X$$
, $Y \subset X$

Пусть Z – множество студентов потока

Тогда X \subset Z.

Включение X в Z строгое, поскольку кроме студентов группы X, в вузе обязательно присутствуют студенты других групп.

4. Универсальное множество

Универсальным называется множество, содержащее все возможные элементы, встречающиеся в данной задаче.

Универсальное множество обозначается символом U.

Универсальное множество U может отличаться для каждой отдельной задачи и определяется условием задачи.

NOTE OF THE PARTY OF THE PARTY

Пустое множество

Пустым называется такое множество, которое не содержит никаких элементов.

Пустое множество обозначается специальным символом Ø.

Пустое множество \emptyset является подмножеством любого множества, т.е. $\emptyset \subseteq A$, где A – любое множество.

Пустое множество

Пустое множество — это множество, поэтому, если некоторое множество \mathbf{A} не содержит ни одного элемента, то $\mathbf{A} = \emptyset$; $|\mathbf{A}| = \mathbf{0}$. Запись $\mathbf{A} = \{\emptyset\}$ означает, что \mathbf{A} содержит один элемент — \emptyset , $|\mathbf{A}| = \mathbf{1}$.

Множество-степень (булеан)

Множество всех подмножеств для множества X называется множеством-степенью X или булеаном и обозначается Р (X).

Для произвольного множества **X** из **n** элементов его множество-степень содержит **2** в степени **n** элементов:

$$|P(X)| = |2^X| = 2^{|X|} = 2^n$$
Пример

Пусть задано множество $A = \{a, b, c\}$.

$$P(A) = 2^{|A|} = {\emptyset,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}$$

Кол-во элементов равно $2^{|A|}$ в 2 в 3 степени, так как мощность A равна 3.

Пустое множество имеет только одно подмножество – само пустое множество, поэтому $P(\emptyset) = \{\emptyset\}$.

5.Геометрическая интерпретация

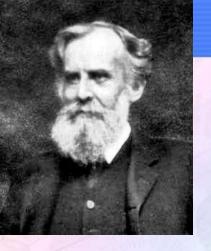
множеств диаграммы Венна

Диаграммы Венна - общее название целого ряда методов визуализации и способов графической иллюстрации, широко используемых в различных областях науки и математики: теория множеств, теория вероятностей.

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов. Позднее они встречаются в сочинениях английского логика Джона Венна (1834—1923) в книге «Символическая логика», изданной в Лондоне в 1881 году

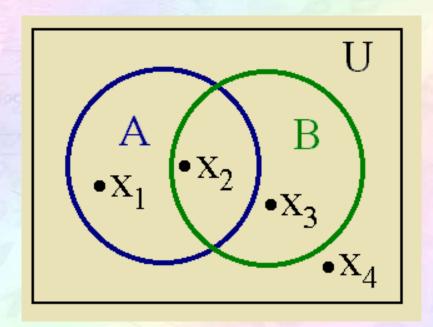
Построение *диаграммы Венна* заключается в разбиении плоскости на 2^n ячеек с помощью n замкнутых фигур (где n — число изображаемых множеств). Каждая фигура на диаграмме представляет отдельное из 2^n подмножеств

35

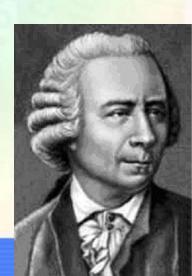


Диаграммы Венна для двух множеств

Диаграмма Венна для двух множеств **А** и **В** выглядит следующим образом.

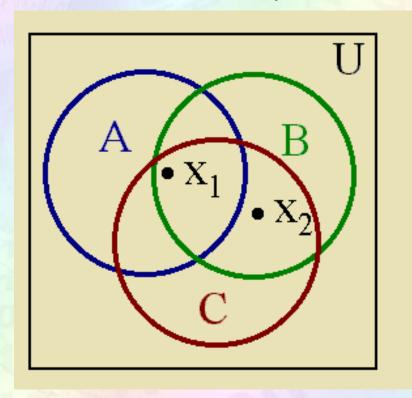


$$x_1 \in A, x_1 \notin B$$
 $x_2 \in A, x_2 \in B$
 $x_3 \in B, x_3 \notin A$
 $x_4 \notin A, x_4 \notin B$



Диаграммы Венна для трех множеств

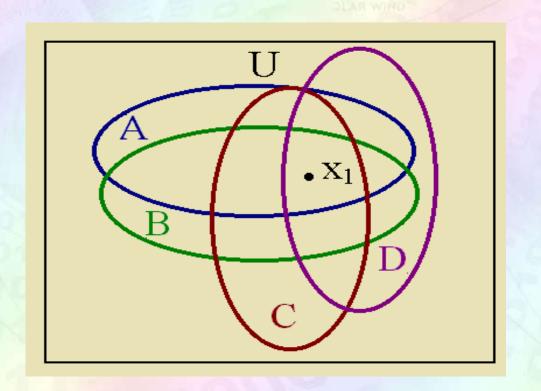
Диаграмма Венна для трех множеств A, B и C выглядит следующим образом.



$$x_1 \in A, x_1 \in B,$$
 $x_1 \in C$
 $x_2 \in B, x_2 \in C,$
 $x_2 \notin A$

Диаграммы Венна для четырех множеств

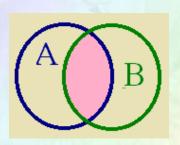
Диаграмму Венна для четырех множеств A, B, C и D можно изобразить следующим образом.



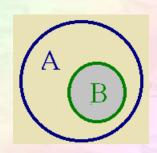
$$x_1 \in A$$
,
 $x_1 \in B$,
 $x_1 \in C$,
 $x_1 \in D$

Круги Эйлера

Индивидуальные отношения между заданными множествами изображают с помощью *кругов* Эйлера.

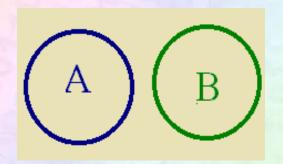


$$A = \{1, 4, 6\};$$
 $B = \{1, 5, 8\};$
Общий
элемент — 1
 $A \cap B$



$$A = \{1, 4, 6\};$$

 $B = \{1, 6\};$
 $B \subset A$



$$A = \{1, 4, 6\};$$

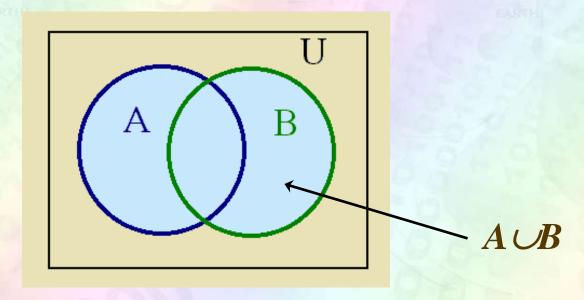
 $C = \{3, 5, 8\};$
Нет общих
элементов A и B .
 $A \neq B$

6. Алгебра множеств

Множество 2^{U} всех подмножеств универсального множества U, с заданными на нем четырьмя операциями, составляют алгебру множеств.

Объединение (сумма) $A \cup B$ есть множество, которое содержит все элементы, входящие в A, или в B, или в A и B одновременно.

 $A \cup B = \{x \mid x \in A \text{ или } x \in B\}.$



Пример

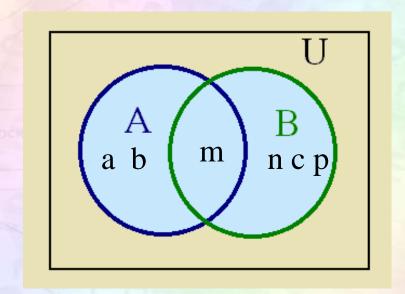
Пусть даны множества:

$$A=\{a,b,m\};$$

$$B = \{m, n, c, p\}.$$

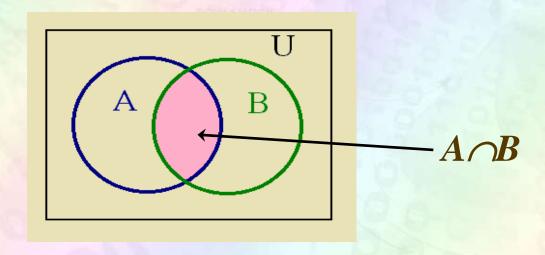
Определить результат их объединения

$$A \cup B = \{a, b, c, m, n, p\}$$



Пересечение (произведение) А∩В есть множество, содержащее только элементы, входящие и в А и В одновременно.

 $A \cap B = \{x \mid x \in A \ \mathsf{u} \ x \in B\}.$



Пример

Пусть даны множества:

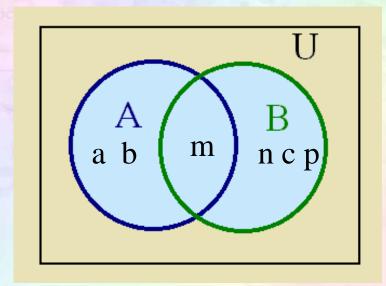
$$A=\{a, b, m\};$$

$$B = \{m, n, c, p\}.$$

Найти их пересечение

$$A \cap B$$
?

$$A \cap B =$$

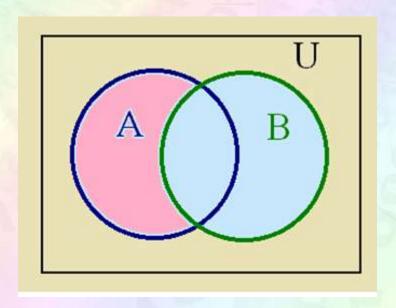


Разность множеств

Разностью множеств АВ

А и В являются только те элементы множества А, которые не входят в множество В:

$$A \mid B = \{x \mid x \in A \text{ и } x \notin B\}.$$

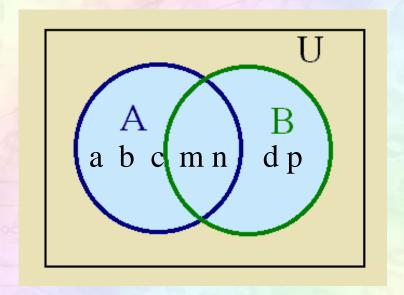


Разность множеств

Пример

Пусть даны множества:

$$A = \{a, b, c, m, n\};$$
 $B = \{m, n, d, p\}.$
Найти их $A \setminus B$?



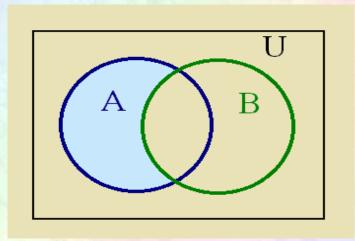
$$A|B =$$

 $Pазность A \mid B$ есть множество, содержащее все элементы A, не входящие в B.

$$A \setminus B = \{x \mid x \in A, x \notin B\};$$

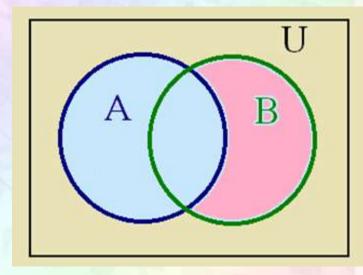
A\B≠B\A

A|B



$$A \mid B = A \cap \bar{B}$$

B|A



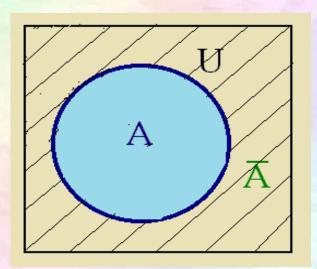
$$B \mid A = B \cap \overline{A}$$

Дополнение множества

Дополнение (отрицание)

Ā (читается «не A») есть множество U\A.

$$\overline{A} = \{x \mid x \not\in A\}.$$



A =U\A- это все элементы универсального множества кроме элементов множества А

Дополнение к множеству

Пример

Пусть задано множество **Z**, состоящее из всех целых чисел: положительных и отрицательных:

$$Z = \{..., -2, -1, 0, 2, ...\}.$$

Выделим множество отрицательных чисел Z

$$Z = \{-\infty \dots -2, -1\}.$$

Определить дополнение к множеству Z

Дополнением к множеству **Z** будет множество натуральных чисел

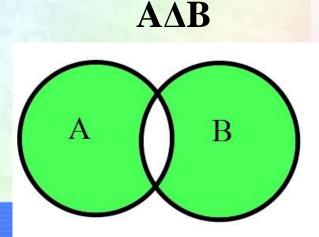
$$N = \{0,1,2,...\}.$$
 $Z_{-} = U - Z_{-} = N$

Симметрическая разность АДВ

Симметрическая разность множеств А∆В включает все элементы исходных множеств, не принадлежащие одновременно обоим исходным множествам.

Другими словами, если есть два множества A и B, их симметрическая разность есть объединение элементов A, не входящих в B, с элементами B, не входящими в A.

 $A\Delta B = (AUB) \setminus (A \cap B)$



Приоритет операций в алгебре множеств

Приоритет операций в алгебре множеств следующий.

- 1. \overline{A} отрицание
- 2. А В пересечение
- 3. А В объединение
- **4.** *А В* **-** *разность*

Приоритет операций в алгебре множеств

Пример

Расставить скобки (определить последовательность выполнения операций) в формуле:

$$E=A \mid B \cup \overline{A} \cap D \mid B$$

$$E=A \setminus (B \cup ((\bar{A}) \cap D)) \setminus B.$$

$$E=A \setminus B \cup ((\bar{A}) \cap D) \setminus B.$$

$$E=A \setminus B \cup ((\bar{A}) \cap D) \setminus B.$$

$$E=A \setminus B \cup ((\bar{A}) \cap D) \setminus B.$$

7. Биекция

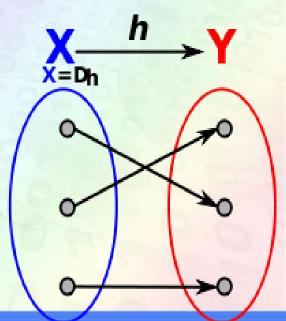
Взаимно-однозначное соответствие

Взаимно-однозначным называется такое соответствие между множествами X и Y, при котором каждому элементу $x \in X$ отвечает один и только один элемент $y \in Y$ и каждому элементу $y \in Y$ отвечает один и только один элемент $x \in X$.

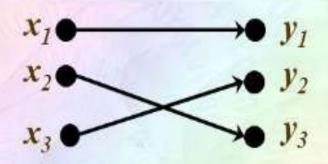
Биекция

Биекция - это отображение одного множество в другое, при котором каждому элементу одного множества соответствует ровно один элемент другого множества.

Множество стран и их столицы Множество страниц книги и их номера

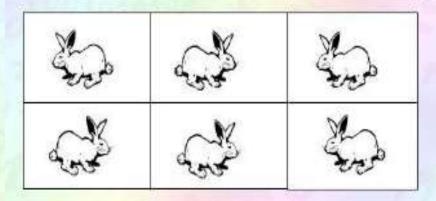


Пример биекции



Пример биективного отображения

Биективное отображение $f: X \to Y$ осуществляет взаимно однозначное отображение между множествами X и Y, поэтому $X \sim Y$, /X/=/Y/



Биективное отображение "Кролик - Клетка"; /X/=6, /Y/=6

Эквивалентные множества

Множества A и B называются эквивалентными $(A \sim B)$, если между ними существует биекция (хотя бы одна).

Эквивалентные множества называют pавномощными, что обозначается так: |A| = |B|.

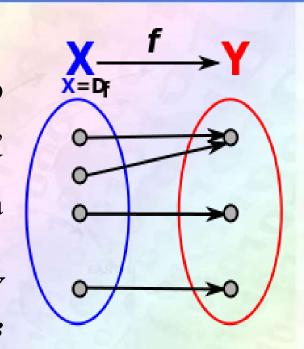
Эквивалентными друг другу оказываются все конечные множества с одинаковым числом элементов n (мощность каждого из этих множеств равна n).

NOTE OF THE PARTY OF THE PARTY

Сюръекция

Сюръекция - это отображение одного множество в другое, обозначается $f: X \to Y$, при котором каждый элемент множества Y является образом хотя бы одного элемента множества X.

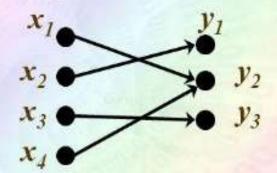
То есть каждому элементу Y соответствует один или более элементов из множества X



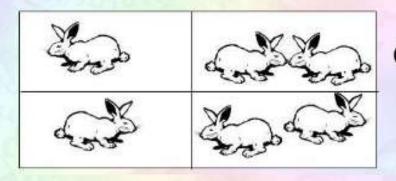
- $ullet f: \mathbb{R} o [-1; \ 1], \ f(x) = \sin x$ сюръективно.
- $ullet f: \mathbb{R} o \mathbb{R}_+, \; f(x) = x^2$ сюръективно.
- $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$ не является сюрьективным (например, не существует такого $x \in \mathbb{R}$, что f(x) = -9). Для этой функции нет отрицательных отображений

Примеры сюръекции

Пример.



Пример сюръективного отображения



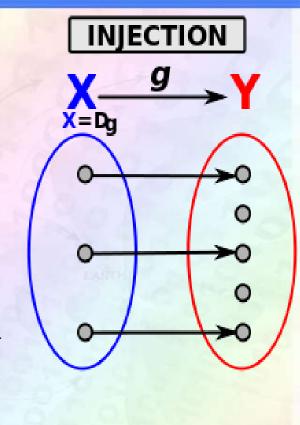
Сюръективное отображение "Кролик - Клетка"; /X/=6, /Y/=4

Соответствие между множеством студентов и множеством групп поскольку каждой группе соответствует хотя бы один студент

Инъекция $f: X \rightarrow Y$

Инъекция - это отображение множества X в множество Y, при котором разные элементы множества X переводятся в разные элементы множества Y, то есть, если два образа при отображении совпадают, то совпадают и прообразы/

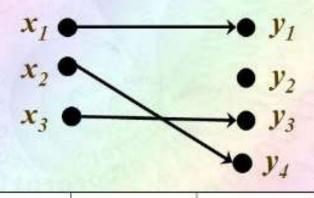
Каждому элементу из X соответствует элемент из Y и некоторому элементу Y соответствует единственный элемент из множества X



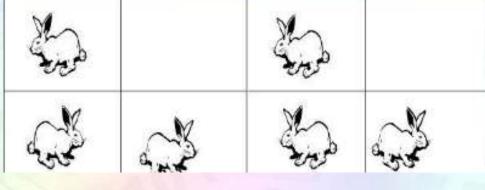
- $ullet f: \mathbb{R}_{>0} o \mathbb{R}, \; f(x) = \ln x$ инъективно.
- ullet $f:\mathbb{R}_+ o\mathbb{R},\;f(x)=x^2$ инъективно.
- ullet $f:\mathbb{R} o\mathbb{R},\;f(x)=x^2$ не является инъективным (f(-2)=f(2)=4).

Пример инъекции

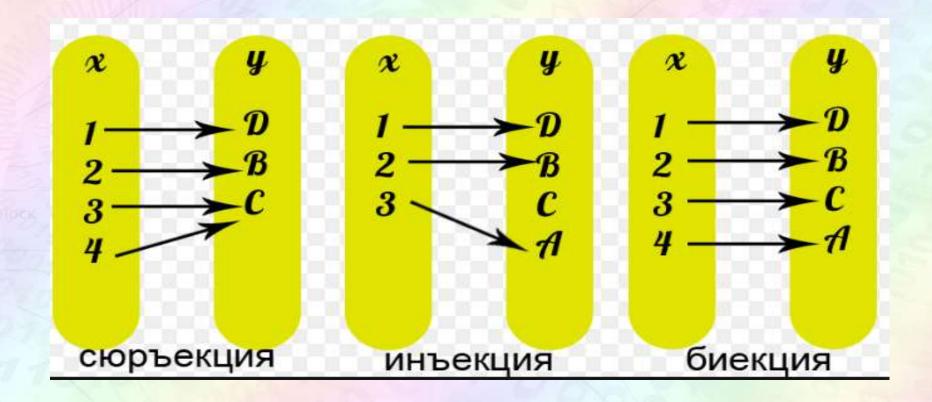
Пример.



Пример инъективного отображения



Инъективное отображение "Кролик - Клетка" /X/=6, /Y/=8



1. Коммутативные законы

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

2. Ассоциативные законы

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

3. Дистрибутивные законы

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

4. Свойства пустого и универсального множеств

$$A \cup \emptyset = A$$

$$A \cup U = U$$

$$A \cap U = A$$

$$A \cap \emptyset = \emptyset$$

5. Законы идемпотентности

$$A \cup A = A$$

$$A \cap A = A$$

6. Закон инволюции (двойного отрицания)

$$A = A$$

7. Закон противоречия

$$A \cap A = \emptyset$$

8. Закон исключенного третьего

$$A \cup \overline{A} = U$$

9. Закон поглощения

$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

10. Законы де Моргана

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

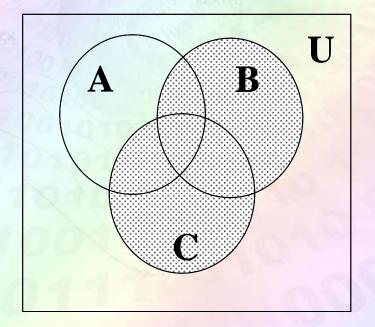
Доказать с помощью диаграмм Венна дистрибутивный закон.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

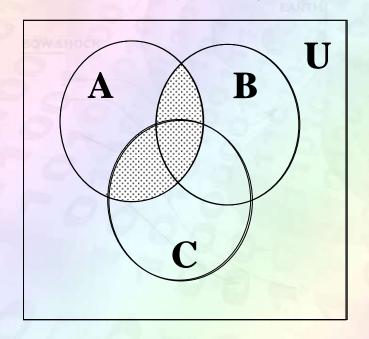
Доказательство дистрибутивного закона

 $A \cap (B \cup C)$

BUC



 $A \cap (B \cup C)$



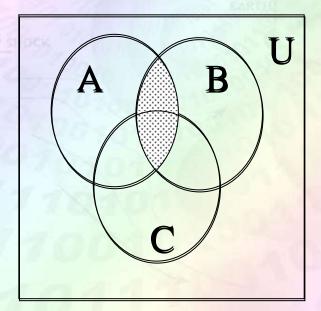
Продолжение примера

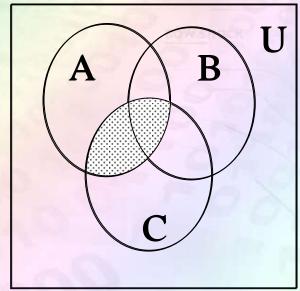
 $(A \cap B) \cup (A \cap C)$

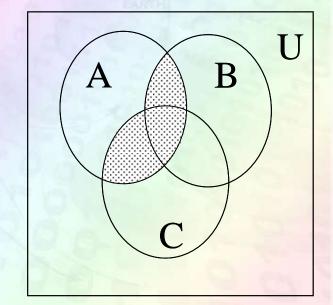
 $(A \cap B)$

 $(A \cap C)$

 $(A \cap B) \cup (A \cap C)$

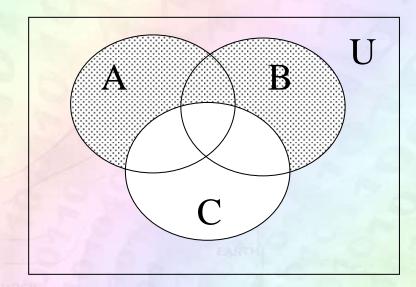


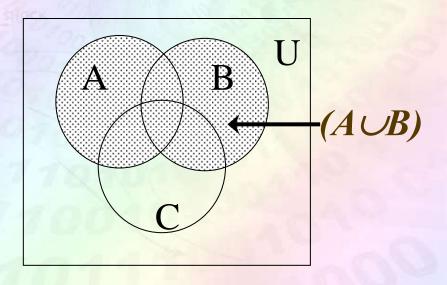


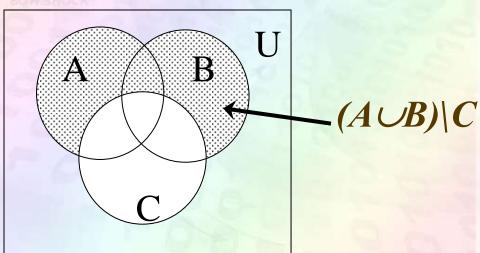


Пример.

Записать формулу, соответствующую заштрихованной части диаграммы Венна







В результате получили формулу

 $(A \cup B) \mid C$

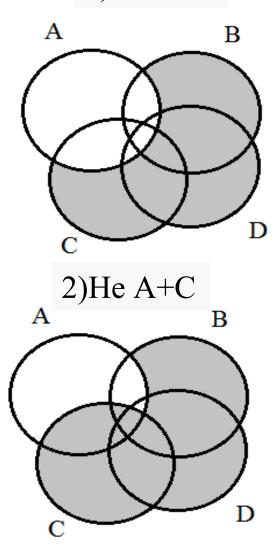
8.Использование теории множеств для решения задач

1)He A

Выполните операции над множествами и представьте результат с помощью диаграмм Эйлера-Венна

A={b, c, h, i, j}; B={e, h, i, s, w}; C={a, b, j, k, l, m}; D={a, h, i, w, x}; $X = (\bar{A} \cup C) \cap B$; $Y = (A \cup B)(C \setminus D)$

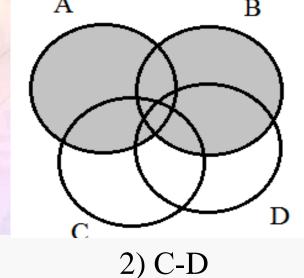
3) $X = (\bar{A} \cup C) \cap B$ A
B
D



Задача 2

1)A+B

Выполните операции над множествами и представьте результат с помощью диаграмм Эйлера-Венна



$$A=\{b, c, h, i, j\};$$

 $B=\{e, h, i, s, w\};$

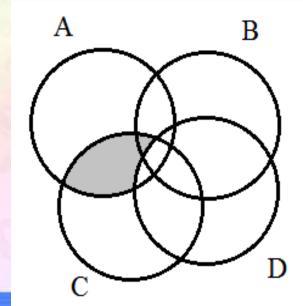
$$C = \{a, b, j, k, l, m\};$$

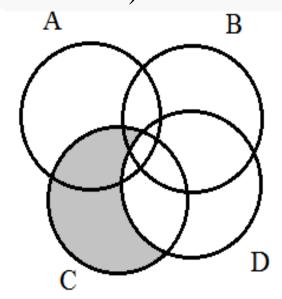
$$D = \{a, h, i, w, x\};$$

$$X = (\bar{A} \cup C) \cap B$$
;

$$Y = (A \cup B)(C \setminus D)$$

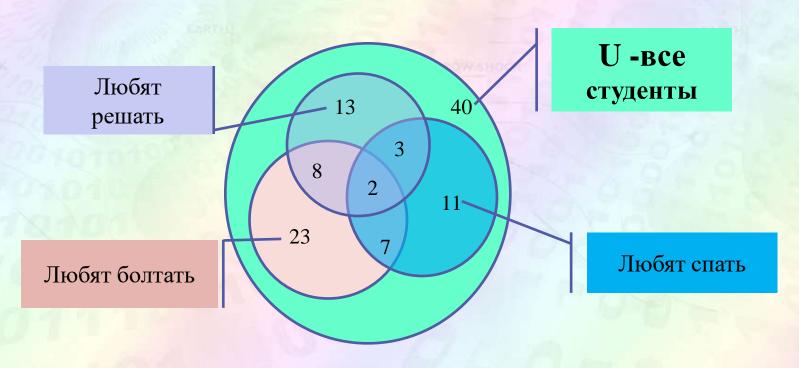
3)
$$Y = (A \cup B)(C \setminus D)$$



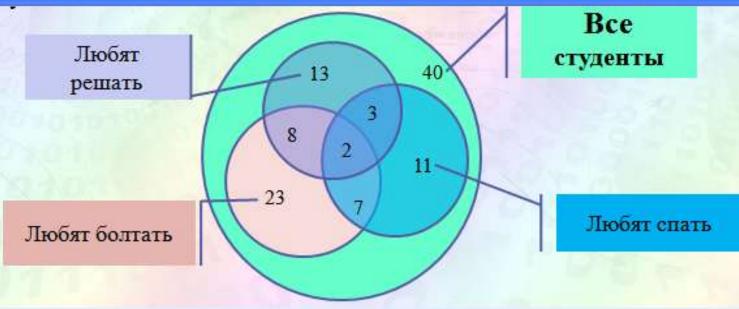


Задача 3

В группе 40 студентов. Из них 23 любят болтать на занятиях, 13 — решать задачи, 11 любят на занятиях спать. Среди тех, кто болтает на занятиях, постоянно засыпают — 7, а среди тех, кто решает задачи, засыпают только 3. Болтать и решать задачи умеют 8 человек; а 2 человека успевают на одной паре делать все три дела. Сколько студентов вообще ничего не любят?



Решение



- 1) 7-2=5- только болтают и спят
- 2) 8-2=6 только болтают и решают
- 3) 23-6-2-5=10 -только болтают
- 4)13-(6+2+1)=4 только решают
- 5) 11-(5+1+2)=3 только спят
- 6) 40-(10+4+3+6+5+1+2)=9 ничего не делают

Задача 4

В группе из 100 туристов 70 человек знают английский язык, 45 знают французский язык и 23 человека знают оба языка. Сколько туристов в группе не знают ни английского, ни французского языка?

Решение задачи:

Обозначим:

U – универсальное множество, т.е. множество всех туристов,

А – множество туристов, знающих английский язык,

В – множество туристов, знающих французский язык.

Решение

Необходимо найти количество туристов, не знающих ни одного языка, т.е. количество элементов множества $D = U \setminus (A \cup B)$.

Решение: Используя формулу, находим количество туристов, знающих хотя бы один язык:

$$\mathbf{m}(\mathbf{A} \cup \mathbf{\Phi}) = \mathbf{m}(\mathbf{A}) + \mathbf{m}(\mathbf{\Phi}) - \mathbf{m}(\mathbf{A} \cap \mathbf{\Phi}) = 70 + 45 - 23 = 92, \Rightarrow$$
 количество туристов, не знающих ни одного языка:

$$\mathbf{m}(\mathbf{D}) = \mathbf{m}(\mathbf{U}) - \mathbf{m}(\mathbf{A} \cup \mathbf{\Phi}) = 100 - 92 = 8 \text{ (чел.)}$$

Ответ: 8 чел.

Среди перечисленных ниже множеств укажите конечные и бесконечные множества:

- а) множество чисел, кратных 13; оо
- б) множество делителей числа 15;
- в) множество деревьев в лесу;
- г) множество натуральных чисел; оо
- д) множество рек Ростовской области;
- е) множество корней уравнения x + 3 = 11;
- ж) множество решений неравенства х + 1 < 3.