

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МАГНИТОГОРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Г.И. НОСОВА»

Сравнительный анализ формирования структуры и свойств при лазерной сварке полосы из нелегированной и микролегированной низкоуглеродистой стали в непрерывных агрегатах

Химический состав сталей

Марка	Содержание химических элементов, %											
стали	С	Si	Mn	S	Р	Cr	Ni	Cυ	N	Al	Ti	Nb
10пс	0,110	0,080	0,520	0,030	0,034	0,027	0,02	0,023	0,004	0,042	-	-
08пс	0,080	0,040	0,410	0,020	0,025	0,030	0,03	0,055	0,005	0,048	-	-
08Ю	0,070	0,020	0,330	0,022	0,020	0,034	0,03	0,044	0,005	0,060	-	-
006/IF	0,005	0,009	0,134	0,007	0,007	0,027	0,02	0,022	0,006	0,050	0,050	0,046

Толщина полос 0,4-1 мм, ширина полос 1400 мм

Схема лазерной сварки

Основные параметры лазерной сварки

мощность лазера (максимальное значение 3,5 кВт);
скорость сварки (1 – 12 м/мин);
расстояние расфокусировки лазера по отношению к поверхности полосы;
мощность предварительного и последующего нагревов

(максимальное значение 25 кВт).

Лазерная сварочная тележка стыкосварочной машины фирмы Miebach

Методика и оборудование исследования

- Световой микроскопический анализ: микроскоп Zeiss Axio Observer с использованием программы обработки изображений Thixomet PRO.
- Электронно-микроскопический анализ: сканирующий электронный микроскоп JEOL JSM-6490LV.
- Рентгеноспектральный микроанализ: приставка Oxford Instruments X-Max 50 к микроскопу JEOL JSM-6490 LV с системой энергодисперсионного спектрального анализа INCA Energy 450.
- Рентгеноструктурный анализ: дифрактометр Shimadzu XRD-7000.
- Испытания микротвердости (по ГОСТ 9450-76): твердомер Buehler Micromet.

Схема расположение точек измерения микротвердости

Контроль качества сварного соединения методом выдавливания лунки по Эриксену

Прибор для проведения испытаний

годный шов

бракованный шов

Характерные структурные зоны лазерного сварного соединения полосы из стали 10пс

зерна феррита

Характерные структурные зоны лазерного сварного соединения полосы из стали 10пс

зона кристаллизаци и шва Феррит HV10 2000 МПа Бейнит HV10 2500 МПа

30Ha перегрева Феррит HV10 1900 МПа **30HC** основной металл HV10

перекристаллизации

нормализации и частичной

HV10 2200 МПа

30HC рекристаллизации

Массивный (квазиполигональный) феррит и реечный бейнит 6 в зоне кристаллизации шва сварного соединения полосы из стали 10пс

Термокинетическая диаграмма распада переохлажденного аустенита стали 10пс

НV10 1986 МПа

Массивный феррит

Реечный бейнит

HV10 2427 МПа

Характерные структурные зоны лазерного сварного соединения из стали 08пс

Бейнит и феррит

Крупные зерна феррита

Мелкие зерна феррита Рекристаллизованные зерна феррита Волокнистая структура

Характерные структурные зоны лазерного сварного соединения из стали 08Ю

Характерные структурные зоны лазерного сварного соединения из стали 006/IF

Особенности формирования структуры лазерного сварного соединения из стали 006/IF

Диаграмма изотермического превращения аустенита в стали 08Ю с наложенными кривыми охлаждения металла сварных швов

Распределение температуры по сечению лазерного сварного соединения из стали микролегированной титаном и ниобием

Рентгеноспектральный микроанализ частиц в структуре 10 сварного соединения полосы из стали 006/IF

Зона основного металла

Зона перегрева

Распределение микротвердости в сварных соединениях

Расстояние от оси сварного шва, мм

11

🗕 Ряд 1 🛛 🔸 Ряд 2 🚽 Ряд 3

Основные выводы

1. В лазерных сварных соединениях полос из сталей 08пс, 10пс, 08Ю и 006/IF наблюдаются следующие кристаллические зоны: зона кристаллизации шва со структурой квазиполигонального феррита и реечного бейнита, зона перегрева с крупными ферритными зернами, зона перекристаллизации с разнозернистой ферритной структурой, зона рекристаллизации с рекристаллизованными и деформированными зернами феррита и зона основного металла со структурой, характерной для холоднодеформированной низкоуглеродистой стали. В микроструктуре всех кристаллических зон, кроме зоны кристаллизации шва, также наблюдается небольшое количество «островков» тонкодисперсного перлита.

2. Зона перекристаллизации состоит из двух участков: зоны полной перекристаллизации (нормализации), металл которой нагревается до температуры незначительно выше температуры A_{C3} (приблизительно до 900-1000 °C), состоящей из мелких перекристаллизовавшихся ферритных зерен и зоны частичной перекристаллизации. В ней металл нагревается до температуры в интервале A_{C1}-A_{C3}, что приводит к образованию смеси мелких перекристаллизовавшихся и крупных рекристаллизованных ферритных зерен. Эта зона является наиболее опасным участком из-за своего разнозернистого строения и нестабильных механических свойств, и при прохождении полосы через линию непрерывного агрегата именно в ней может произойти обрыв.

3. Распределение микротвердости в лазерных сварных соединениях полос из всех исследованных марок стали 08пс, 10пс, 08Ю и 006/IF является симметричным по отношению к оси сварного шва, а также практически одинаково в центральной и кромочной ее части.

4. Для всех сталей строение кристаллических зон лазерных сварных соединений полос морфологически одинаково, а их протяженность, распределение микротвердости и протяженность области разупрочнения различаются в зависимости от размерно-марочного сортамента стали и условий сварки

Основные выводы

5. Максимальное значение микротвердости наблюдается на оси сварного шва в зоне его кристаллизации, что определяется наличием бейнитной структуры и составляет от 2140 до 3040 МПа в зависимости от марки стали, толщины полосы и режима сварки. На некотором расстоянии от оси сварного шва наблюдается снижение твердости, минимальное значение которой соответствует зоне перегрева и составляет от 1390 до 2050 МПа. Разупрочнение лазерных сварных соединений в сталях 10пс, 08пс и 08Ю составляет до 38 %, а в сверхнизкоуглеродистой стали 006/IF - до 15 %.

6. При лазерной сварке холоднокатаной полосы из стали 006/IF происходит полное растворение комплексных частиц нитридов (карбонитридов) титана и ниобия и нитридов (карбонитридов) титана в металле сварочной ванны. При последующем охлаждении эти частицы не выделяются и остаются в твердом растворе металла зоны кристаллизации шва, что приводит к повышению микротвердости в зоне кристаллизации шва сварного соединения стали 006/IF примерно на 500 HV по сравнению с микротвердостью стали 08Ю.

7. В участке околошовной зоны сварного соединения полосы из стали 006/IF, прилегающей к зоне кристаллизации шва, образуются аномально крупные зерна феррита, ориентированные в направлении теплоотвода, что может быть объяснено замедлением выделения растворившихся в этой зоне частиц, из-за высоких скоростей охлаждения, характерных для лазерной сварки.

8. Протяженность зоны перекристаллизации сварного соединения из стали 006/IF составляет приблизительно 0,06 мм, что объясняется малым временем пребывания металла в этой зоне при температуре выше А_{C3} из-за больших скоростей теплоотвода в околошовную зону в процессе лазерной сварки.

Микроструктура и свойства лазерных сварных соединений 26 после рекристаллизационного отжига полосы из стали 08пс

Распределение микротвердости

Остаточные напряжения

Расстояние от оси шва, мм

Микроструктура и свойства лазерных сварных соединений 27 после рекристаллизационного отжига полосы из стали 006/IF

зона кристаллизации шва

зона перегрева

Распределение микротвердости

зона перекристаллизации зона рекристаллизации

Остаточные напряжения

Основные выводы

1. Рекристаллизационный отжиг непрерывных полос с лазерными сварными соединениями из сталей 08пс, 10пс, 08Ю и 006/IF в линии непрерывного агрегата АНО/АНГЦ снижает микротвердость и величину остаточных напряжений, делая их распределение более однородным. При этом зона рекристаллизации объединяется с основным рекристаллизованным металлом, вследствие чего протяженность области разупрочнения уменьшается на величину протяженности зоны рекристаллизации.

2. Рекомендованы основные параметры лазерной сварки полосы из стали марок 08пс, 10пс, 08Ю и 006/IF (мощность лазера, скорость сварки, расстояние расфокусировки, а также мощности предварительного и последующего нагревов), обеспечивающие получение сварного соединения с наименьшей протяженностью области разупрочнения и исключающие обрыв полосы при транспортировке в линиях непрерывных агрегатов. Результаты работы использованы при адаптации режимов лазерной сварки холоднокатаной полосы различного размерно-марочного сортамента в линиях непрерывных агрегатов комплекса холодной прокатки ЛПЦ–11 ММК